Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Continuous Discharge Ignition System for EGR Limit Extension in SI Engines

2011-04-12
2011-01-0661
A novel continuous inductive discharge ignition system has been developed that allows for variable duration ignition events in SI engines. The system uses a dual-coil design, where two coils are connected by a diode, combined with the multi-striking coil concept, to generate a continuous current flow through the spark plug. The current level and duration can be regulated by controlling the number of re-strikes that each coil performs or the energy density the primary coils are charged to. Compared to other extended duration systems, this system allows for fairly high current levels during the entire discharge event while avoiding the extremely high discharge levels associated with other, shorter duration, high energy ignition systems (e.g. the plasma jet [ 1 , 2 ], railplug [ 3 ] or laser ignition systems [ 4 , 5 , 6 , 7 , 8 ].
Technical Paper

A Comprehensive Numerical Approach to Predict Thermal Runaway in Li-Ion Battery Packs

2021-04-06
2021-01-0748
With the increasing level of electrification of on-road, off-road and stationary applications, use of larger lithium-ion battery packs has become essential. These packs require large capital investments on the order of millions of dollars and pose a significant risk of self-annihilation without rigorous safety evaluation and management. Testing these larger battery packs to validate design changes can be cost prohibitive. A reliable numerical simulation tool to predict battery thermal runaway under various abuse scenarios is essential to engineer safety into the battery pack design stage. A comprehensive testing & simulation workflow has been established to calibrate and validate the numerical modeling approach with the test data for each of the individual sub model - electrochemical, internal short circuit and thermal abuse model. A four-equation thermal abuse model was built and validated for lithium-ion 21700 form factor cylindrical cells using NCA cathodes.
Technical Paper

A Comparison of Emissions and Flow Restriction of Thinwall Ceramic Substrates for Low Emission Vehicles

1999-03-01
1999-01-0271
The emission and flow restriction characteristics of three different ceramic substrates with varying wall thickness and cell density (400 cpsi/6.5 mil, 600/4.3, and 600/3.5) are compared. These 106mm diameter substrates were catalyzed with similar amounts of washcoat and fabricated into catalytic converters having a total volume of 2.0 liters. A Pd/Rh catalyst technology was applied at a concentration of 6.65 g/l and a ratio of 20/1. Three sets of converters (two of each type) were aged for 100 hours on an engine dynamometer stand. After aging, the FTP performance of these converters were evaluated on an auto-driver FTP stand using a 2.4L, four-cylinder prototype engine and on a 2.4L, four-cylinder prototype vehicle. A third set of unaged converters was used for cold flow restriction measurements and vehicle acceleration tests.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0707
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0715
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Technical Paper

A Bench Test Facility for Engine Muffler Evaluation

1963-01-01
630283
The problem associated with laboratory evaluation of muffler acoustical characteristics are complicated both by the acoustical considerations involved in obtaining an adequate noise source and by the ambiguities involved in defining what constitutes quality in a muffler built for general application. In order to quantitatively define the characteristics of quality mufflers, an extensive series of field tests were conducted on a variety of sizes and types of mufflers in conjunction with four engine configurations. Work then turned to the development of a wide band siren noise source and acoustical test system which would simulate the high impedance character of an engine exhaust noise source, and in addition generate the necessary intensity and spectral characteristics required to obtain test data over the range of noise conditions encountered in the field.
Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
Technical Paper

3D-Semi 1D Coupling for a Complete Simulation of an SCR System

2013-04-08
2013-01-1575
The presented work describes how numerical modeling techniques were extended to simulate a full Selective Catalytic Reduction (SCR) NOx aftertreatement system. Besides predicting ammonia-to-NOX ratio (ANR) and uniformity index (UI) at the SCR inlet, the developed numerical model was able to predict NOx reduction and ammonia slip. To reduce the calculation time due to the complexity of the chemical process and flow field within the SCR, a semi-1D approach was developed and applied to model the SCR catalyst, which was subsequently coupled with a 3D model of the rest of the exhaust system. Droplet depletion of urea water solution (UWS) was modeled by vaporization and thermolysis techniques while ammonia generation was modeled by the thermolysis and hydrolysis method. Test data of two different SCR systems were used to calibrate the simulation results. Results obtained using the thermolysis method showed better agreement with test data compared to the vaporization method.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
X